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Objective: To examine whether the influence of hypertension (HTN) status on
longitudinal changes in brain glucose metabolism was modified by the apolipoprotein
4 (APOE4) status among older people with normal cognition.

Methods: In this study, we included 217 older individuals with normal cognition from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Participants were divided
into the HTN and no HTN groups based on self-reported medical history. Brain glucose
metabolism was assessed by 18F-fluorodeoxyglucose-positron emission tomography
(FDG-PET). Linear mixed model was fitted to examine the association between the
HTN × APOE4 interaction and longitudinal changes in brain glucose metabolism after
controlling for several covariates.

Results: In the present study, we found that the association between HTN status and
longitudinal changes in brain glucose metabolism varied as a function of the APOE4
status, such that the HTN/APOE4+ group showed a steeper decline in FDG SUVR than
all other groups (No HTN/APOE4-, HTN/APOE4-, and No HTN/APOE4+). Nevertheless,
there was no significant difference in the rate of decline in FDG SUVR among other
groups (No HTN/APOE4-, HTN/APOE4-, and No HTN/APOE4+).

Conclusion: The APOE4 genotype interacted with hypertension status to affect
longitudinal changes in brain glucose metabolism among older individual with normal
cognition, such that the HTN/APOE4+ group showed a steeper decline in FDG SUVR
than other groups.

Keywords: brain glucose metabolism, FDG-PET, hypertension, APOE4, longitudinal study

INTRODUCTION

Deteriorating brain glucose metabolism is a key feature of Alzheimer’s disease (AD) and precedes
the clinical onset of AD (Small et al., 1995; Reiman et al., 1996; Li et al., 2008; Chen and Zhong,
2013). Cerebral glucose metabolic rates, assessed by 18F-fluorodeoxyglucose-positron emission
tomography (FDG-PET), provide an crucial measure of the dysfunction of neurons and synapses
in living human (De Leon et al., 2001; Dubois et al., 2007).
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The apolipoprotein E (APOE) gene is the most important
genetic risk factor for late-onset sporadic AD (Safieh et al., 2019).
This gene has three polymorphic forms, ε2, ε3, ε4; and the
APOE4 allele increases the risk of cognitive decline and AD
dementia (Safieh et al., 2019). However, most, but not all FDG
studies have suggested that the APOE4 allele is associated with
reduced levels of brain glucose metabolism (Reiman et al., 1996,
2004, 2005; Corder et al., 1997; Samuraki et al., 2012). There
is a possibility that the APOE4 allele may interact with other
cardiovascular diseases [e.g., hypertension (HTN)] to affect the
levels of brain glucose metabolism. In line with this notion,
previous observational studies indicated that APOE4 and HTN
act synergistically to influence cognitive performance, subcortical
white matter integrity, and cortical amyloid accumulation (Peila
et al., 2001; De Leeuw et al., 2004; De Frias et al., 2014;
Oberlin et al., 2015; Jeon et al., 2019). However, no prior studies
have attempted to assess the contributions of the APOE4 and
HTN status to longitudinal changes in brain glucose metabolism
among older individuals with normal cognition.

In this study, among older individuals with normal cognition,
we hypothesized that the interaction between APOE4 and
HTN is associated with longitudinal changes in brain glucose
metabolism, such that APOE4 carriers with a history of
hypertension (APOE4 + /HTN) show a steeper rate of decline
in brain glucose metabolism than other groups (APOE4-/HTN,
APOE4-/No HTN, and APOE4/No HTN).

MATERIALS AND METHODS

Alzheimer’s Disease Neuroimaging
Initiative (ADNI)
Longitudinal data used in the preparation of this work were
extracted from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1. The ADNI study was conducted with the
primary aim of discovering potential biomarkers of cognitive
decline for clinical trials. At ADNI centers, local institutional
review boards approved the study, and each participant provided
written informed consent.

Participants
At baseline, we included a total of 217 older individuals with
normal cognition. In the present analysis, we included subjects
who had baseline and follow-up measurement of brain glucose
metabolism. The sample size at baseline and each follow-up visit
were displayed in Table 1. Participants with normal cognition
had a Clinical Dementia Rating (CDR) (Morris, 1993) of 0 and
a mini-mental state examination (MMSE) (Folstein et al., 1975)
of 24 or higher.

Hypertension (HTN) Status
Participants were further categorized into the No HTN (n = 121)
and HTN (n = 96) groups according to the self-reported history
of HTN. Several search terms (hypertension, high blood pressure,
and HTN) were used to screen medical history of ADNI’ subjects.

1www.adni-info.org

TABLE 1 | Demographic and clinical variables by HTN status.

Variables No HTN (n = 121) HTN (n = 96) P values

Age, years 74.2 ± 5.99 75.2 ± 5.69 0.2

Education, years 16.4 ± 2.65 16.4 ± 3.03 0.8

Female gender, n (%) 54 (44.6) 39 (40.6) 0.55

APOE4, n (%) 30 (24.8) 31 (32.3) 0.22

MMSE scores 29.1 ± 1.13 29 ± 1.26 0.48

FDG SUVR 1.31 ± 0.11 1.29 ± 0.11 0.18

Serum glucose, mg/dL 97.7 ± 18.3 102 ± 22.9 0.16

Total cholesterol, mg/dL 191 ± 39.6 185 ± 37.5 0.27

Triglyceride, mg/dL 136 ± 86.2 147 ± 89 0.35

Numbers of participants at baseline and each follow-up visit, n

Baseline 121 96

1 year 41 42

2 years 112 91

3 years 36 34

4 years 29 25

5 years 18 18

6 years 24 17

7 years 14 16

8 years 3 2

11 years 4 4

12 years 1 0

HTN, hypertension; MMSE, mini-metal state examination; FDG SUVR,
fluorodeoxyglucose standardized uptake value ratios.

APOE Genotyping
APOE4 genotypes of ADNI’s participants were extracted from
the ADNI website2. Participants were divided into the APOE4-
(absence of the APOE4 allele) and APOE4+ (presence of at least
one APOE4 allele) groups.

Measurement of Brain Glucose
Metabolism
Cerebral metabolic rates for glucose were examined using FDG-
PET by Susan Landau and William Jagust’s group, Helen Wills
Neuroscience Institute, UC Berkeley and Lawrence Berkeley
National Laboratory. The neuroimaging techniques have been
described previously (Landau et al., 2011). Five pre-defined
regions of interest (MetaROIs) were identified according to
coordinates reported frequently in previously FDG investigations
comparing healthy controls, MCI, and AD patients. These
five crucial hypometabolic ROIs included left angular gyrus,
right angular gyrus, left inferior temporal gyrus, right inferior
temporal gyrus, and bilateral posterior cingulate gyrus. In
the present analysis, FDG standardized uptake value ratios
(SUVR) were defined by averaging FDG uptake of these
five regions and then dividing by FDG uptake of pons and
cerebellum (a reference region) (Jagust et al., 2010; Landau
et al., 2011). The reference region (the cerebellum and pons)
was used in order to reduce between-subject nuisance variability
in trace uptake.

2adni.loni.usc.edu
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Statistical Analysis
Group differences were examined with ANOVA tests for
continuous parameters and Chi-squared tests for categorical
parameters. In an effort to assess the association of the
HTN∗APOE4 interaction with longitudinal changes in
FDG SUVR among cognitively normal older individuals,
we performed the linear mixed model including the three-way
HTN × APOE4 × Time interaction term. This model also
included main effects of age, educational years, gender, serum
glucose, triglyceride, total cholesterol and their interactions
with time, along with a random intercept for each subject.
Finally, to examine interactions between HTN and APOE4
genotype, longitudinal changes in FDG SUVR across all
pairwise group contrasts (No HTN/APOE4-, HTN/APOE4-,
No HTN/APOE4+ , and HTN/APOE4+) were conducted. The
Tukey method was used for multiple comparisons correction. All
statistical work was conducted using R version 3.6.0.

RESULTS

Demographic and Clinical Variables by
HTN Status
At baseline, a total of 217 older individuals with normal cognition
was included. As shown in Table 1, no significant differences in
demographics (age, education, gender and APOE4 genotype) and
clinical variables (MMSE scores, FDG SUVR, serum glucose, total
cholesterol, and triglyceride) were found between two groups
(No HTN vs. HTN).

Demographics by HTN and APOE4
Status
Our participants were divided into four groups according to
HTN and APOE4 status (Table 2). Demographics were compared
between these four groups. However, there were no significant
differences in age, educational years or the percentage of female
gender across the four groups (all p > 0.05).

Longitudinal Change Models
To assess the contributions of HTN and APOE4 status to
longitudinal changes in FDG SUVR, the linear mixed model
was fitted. As shown in Table 3, we found that the 3-way
interaction between HTN, APOE4, and time was significant for
FDG SUVR (estimate = −0.0181, SE = 0.0054, p = 0.0008). To
better understand this interaction, longitudinal changes in FDG
SUVR across all pairwise group contrasts (No HTN/APOE4-,

HTN/APOE4-, No HTN/APOE4+ , and HTN/APOE4+) were
conducted (Figure 1 and Table 4). Compared with other
groups, the HTN/APOE4+ group demonstrated significantly or
marginally significant steeper decline in FDG SUVR (Figure 1
and Table 4). However, there was no significant difference in
the rate of decline in FDG SUVR among other groups (No
HTN/APOE4-, HTN/APOE4-, and No HTN/APOE4+ ; Figure 1
and Table 4).

DISCUSSION

In this study, we hypothesized that the APOE4 allele would
moderate the influence of HTN status on longitudinal changes
in brain glucose metabolism among cognitively normal
older people. In line with this hypothesis, we observed
that the relationship between HTN status and longitudinal
changes in brain glucose metabolism varied as a function
of the APOE4 status, such that the HTN/APOE4+ group
showed a steeper decline in FDG SUVR than all other
groups (No HTN/APOE4-, HTN/APOE4-, and No
HTN/APOE4+). Nevertheless, there was no significant
difference in the rate of decline in FDG SUVR among
other groups (No HTN/APOE4-, HTN/APOE4-, and
No HTN/APOE4+).

The finding that the HTN/APOE4+ group had a steeper
decline in FDG SUVR than all other groups among cognitively
normal older people is novel. Consistent with our finding,
previous observational studies showed that the influence of
hypertension on cognitive deficits, medial temporal atrophy,
subcortical white matter lesions, cortical amyloid deposition,
and tau phosphorylation was greater in APOE4 carriers than
in APOE4 non-carriers (Peila et al., 2001; De Leeuw et al.,
2004; Korf et al., 2004; Den Heijer et al., 2005; Kester et al.,
2010; De Frias et al., 2014; Andrews et al., 2015; Oberlin
et al., 2015; Jeon et al., 2019). Collectively these data and
ours indicate that the impact of hypertension on neuronal
damage and synapse loss appears to be exacerbated by the
APOE4 allele.

The mechanisms by which the APOE4 allele could modify
the association of hypertension on longitudinal changes in FDG
SUVR are not very clear. However, there are several potential
possibilities for the APOE4 × Hypertension interaction in
relation to longitudinal changes in FDG SUVR. First, APOE is
thought to play an important role in the response to neuronal
damage by redistributing lipids to facilitate the regeneration of
neuronal axons and maintaining the structure and function of the

TABLE 2 | Cognitively normal older adults by HTN and APOE4 status.

Variables No HTN/APOE4− HTN/APOE4− No HTN/APOE4+ HTN/APOE4+

N 91 65 30 31

Age, years 74.4 ± 5.72 76 ± 5.29 73.4 ± 6.81 73.5 ± 6.19

Education, years 16.4 ± 2.67 16.6 ± 3.2 16.5 ± 2.66 15.8 ± 2.6

Female, n (%) 40 (44) 26 (40) 14 (46.7) 13 (41.9)

HTN, hypertension.
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TABLE 3 | Linear mixed models examining the influence of the HTN∗APOE4 interaction on longitudinal changes in FDG SUVR.

Predictors Estimate SE P values

Age × Time −0.0004 0.0003 0.1175

Education × Time −0.0006 0.0004 0.1672

Female gender × Time −0.0001 0.0028 0.767

Serum glucose × Time 0 0.0001 0.7635

Triglyceride × Time 0 0 0.0608

Total cholesterol × Time 0 0 0.1755

HTN × Time 0.0037 0.0028 0.1898

APOE4 × Time 0.0059 0.0038 0.1262

HTN × APOE4 × Time −0.0180 0.0054 0.0008

HTN: hypertension. The model was adjusted for main effects of age, education, gender, serum glucose, triglyceride, and total cholesterol (estimate not displayed).
Estimates represent the amount of change in FDG SUVR every year.

FIGURE 1 | Longitudinal changes in FDG SUVR stratified by HTN and APOE4 status. Compared with other groups, the HTN/APOE4 + group demonstrated
significantly steeper decline in FDG SUVR. However, there was no significant difference in the rate of decline in FDG SUVR among other groups. HTN, hypertension.

TABLE 4 | Comparisons across HTN/APOE4 groups.

Contrast Estimate SE P value

No HTN/APOE4- vs. HTN/APOE4- −0.0037 0.0028 0.5645

No HTN/APOE4- vs. No HTN/APOE4+ −0.0059 0.0039 0.4299

No HTN/APOE4- vs. HTN/APOE4+ 0.0085 0.0036 0.0784

HTN/APOE4- vs. No HTN/APOE4+ −0.0022 0.0041 0.9506

HTN/APOE4- vs. HTN/APOE4+ 0.0122 0.0037 0.0061

No HTN/APOE4+ vs. HTN/APOE4+ 0.0144 0.0047 0.0114

HTN, hypertension; FDG SUVR, fluorodeoxyglucose standardized uptake value ratios. Estimates represent the amount of change in FDG SUVR every year.

microtubules (Handelmann et al., 1992). Compared with wild-
type mice, APOE-deficient mice have demonstrated much greater
ischemic neuronal injury after ischemic episodes (Horsburgh
et al., 1999). However, this beneficial effect is dependent on

polymorphic forms: the APOE3 allele appears to facilitate the
repair process, while the APOE4 allele tends to retard the process
(Nathan et al., 1994; Bellosta et al., 1995; Teter et al., 1999).
Therefore, it is likely that the influence of hypertension on
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neuronal structure would be greater in APOE4 carriers because
of their limited ability to promote the repair process.

Second, it has been reported that a history of hypertension
is associated with higher levels of neuritic plaques and
neurofibrillary tangles (Sparks et al., 1995; Petrovitch
et al., 2000). Similarly, compared to APOE4 non-carriers,
APOE4 carriers shows a greater amount of amyloid and
tau pathologies (Leoni, 2011). More importantly, a recent
study using [11C]-Pittsburgh-compound-B-positron emission
tomography showed that in APOE4 carriers, hypertension
was associated with increased cortical Aβ accumulation
(Jeon et al., 2019), which could contribute to brain
glucose hypometabolism (Lowe et al., 2014). Therefore,
the effect of hypertension on neuronal injury, measured
by FDG SUVR, would be expected to be larger for
APOE4 carriers.

Several limitations should be noted. First, participants
in the ADNI study were highly educated and had fewer
comorbidities. For instance, participants who had the Hachinski
Ischemic Scale (HIS) score of 5 or higher were excluded from
the ADNI study. Thus, this may limit the generalizability
of our findings. Further studies, especially population-
based studies, were needed to replicate our results. Second,
the present study primarily focused on the association of
the APOE4∗hypertension interaction with changes in FDG
SUVR. It would be interesting to examine the association
of this interaction with clinical progression and other AD-
related markers, including cognitive function and CSF
AD pathologies.

CONCLUSION

In conclusion, the APOE4 interacted with hypertension status
to affect longitudinal changes in brain glucose metabolism
among older individual with normal cognition, such that the
HTN/APOE4+ group showed a steeper decline in FDG SUVR
than other groups (Nos HTN/APOE4-, HTN/APOE4-, and
No HTN/APOE4+).
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